Artykuły - Ośrodki transmisji danych w sieciach komputerowych.
Don Emilio - Nie 09 Paź, 2005 18:17 Temat postu: Ośrodki transmisji danych w sieciach komputerowych. Kable miedziane.
W konwencjonalnych sieciach komputerowych kable są podstawowym medium łączącym komputery ze względu na ich niską cenę i łatwość instalowania. Chociaż kable mogą być wykonane z różnych metali, wiele sieci jest połączonych kablami miedzianymi, ponieważ miedź ma małą oporność, co sprawia, że sygnał może dotrzeć dalej.
Typ okablowania w sieciach komputerowych jest tak dobierany, aby zminimalizować interferencję sygnałów. Zjawisko to powstaje w kablach łączących komputery, ponieważ sygnał elektryczny biegnący w kablu działa jak mała stacja radiowa - kabel emituje niewielką ilość energii elektromagnetycznej, która "wędruje" przez powietrze. Ta fala elektromagnetyczna, napotykając inny kabel generuje w nim słaby prąd. Natężenie wygenerowanego prądu zależy od mocy fali elektromagnetycznej oraz fizycznego umiejscowienia kabla. Zwykle kable nie biegną na tyle blisko, aby interferencja stanowiła problem. Jeżeli dwa kable leżą blisko siebie pod kątem prostym i sygnał przechodzi przez jeden z nich to prąd wygenerowany w drugim jest prawie niewykrywalny. Jeżeli jednak dwa kable leżą równolegle obok siebie, to silny sygnał wysłany jednym spowoduje powstanie podobnego sygnału w drugim. Ponieważ komputery nie rozróżniają sygnałów przypadkowych od zamierzonej transmisji, indukowany prąd może wystarczyć do zakłócenia lub uniemożliwienia normalnej transmisji.
Aby zminimalizować interferencję, sieci są budowane z wykorzystaniem jednego z dwu podstawowych typów okablowania: skrętki lub kabla koncentrycznego. Okablowanie skrętką jest również stosowane w systemach telefonicznych. Skrętkę tworzą cztery pary kabla, z których każda jest otoczona materiałem izolacyjnym. Para takich przewodów jest skręcana. Dzięki skręceniu zmienia się elektryczne własności kabla i może on być stosowany do budowy sieci. Po pierwsze dlatego, że ograniczono energię elektromagnetyczną emitowaną przez kabel. Po drugie, para skręconych przewodów jest mniej podatna na wpływ energii elektromagnetycznej - skręcanie pomaga w zabezpieczeniu przed interferencją sygnałów z innych kabli.
Drugi typ kabla miedzianego używanego w sieciach to kabel koncentryczny - takie samo okablowanie jest używane w telewizji kablowej. Kabel koncentryczny zapewnia lepsze zabezpieczenie przed interferencją niż skrętka. W kablu koncentrycznym pojedynczy przewód jest otoczony osłoną z metalu, co stanowi ekran ograniczający interferencję.
Osłona w kablu koncentrycznym to elastyczna metalowa siatka wokół wewnętrznego przewodu. Stanowi ona barierę dla promieniowania elektromagnetycznego. Izoluje ona wewnętrzny drut na dwa sposoby: zabezpiecza go przed pochodzącą z zewnątrz energią elektromagnetyczną, która mogłaby wywołać interferencję, oraz zapobiega przed wypromieniowaniem energii sygnału przesyłanego wewnętrznym przewodem co mogłoby mieć wpływ na sygnał w innych kablach. Osłona w kablu koncentrycznym jest szczególnie efektywna, gdyż otacza centralny przewód ze wszystkich stron. Taki kabel może być umieszczony równolegle do innych a także zginany i układany wokół narożników. Osłona zawsze pozostaje na miejscu.
Pomysł użycia osłony do zabezpieczenia przewodów został także zastosowany do skrętki. Skrętka ekranowana składa się z 4 par przewodów otoczonej metalową osłoną. Przewody są osłonięte materiałem izolacyjnym, dzięki czemu ich metalowe rdzenie nie stykają się; osłona stanowi jedynie barierę zabezpieczającą przed wkraczaniem i uciekanie promieniowania elektromagnetycznego.
Wyróżnić można 5 kategorii skrętki. Kategorie 1 i 2 zostały uznane w 1995 roku za przestarzałe. Dwie z owych 5 kategorii okazały się najbardziej popularne wśród użytkowników - trzecia i piąta. Kategoria 3 oferuje pasmo 16 MHz, które umożliwia przesyłanie sygnałów z prędkością do 10 Mbps na odległość maksymalną 100 m. Kategoria 4 obsługuje pasmo o szerokości 20 MHz, a kategoria 5 o szerokości 100 MHz. Przy założeniu, że wymagania dotyczące maksymalnej odległości są spełnione, kable kategorii 5 umożliwiają przesyłanie danych z prędkością 100 Mbps, 155 Mbps, a nawet 256 Mbps.
Włókna szklane (światłowody).
Do łączenia sieci komputerowych używa się również giętkich włókien szklanych, przez które dane są przesyłane z wykorzystaniem światła. Cienkie włókna szklane zamykane są w plastykowe osłony, co umożliwia ich zginanie nie powodując łamania . Nadajnik na jednym końcu światłowodu jest wyposażony w diodę świecącą lub laser, które służą do generowania impulsów świetlnych przesyłanych włóknem szklanym. Odbiornik na drugim końcu używa światłoczułego tranzystora do wykrywania tych impulsów.
Można wymienić cztery główne powody przewagi światłowodów nad zwykłymi przewodami:
Nie powodują interferencji elektrycznej w innych kablach ani też nie są na nią podatne.
Impulsy świetlne mogą docierać znacznie dalej niż w przypadku sygnału w kablu miedzianym.
Światłowody mogą przenosić więcej informacji niż za pomocą sygnałów elektrycznych.
Inaczej niż w przypadku prądu elektrycznego, gdzie zawsze musi być para przewodów połączona w pełen obwód, światło przemieszcza się z jednego komputera do drugiego poprzez pojedyncze włókno.
Obok tych zalet światłowody mają także wady:
Przy instalowaniu światłowodów konieczny jest specjalny sprzęt do ich łączenia, który wygładza końce włókien w celu umożliwienia przechodzenia przez nie światła. Gdy włókno zostanie złamane wewnątrz plastikowej osłony, znalezienie miejsca zaistniałego problemu jest trudne. Naprawa złamanego włókna jest trudna ze względu na konieczność użycia specjalnego sprzętu do łączenia dwu włókien tak, aby światło mogło przechodzić przez miejsce łączenia.
Wyróżniamy dwa typy światłowodów:
Jednomodowe.
Wielomodowe.
Radio
Fale elektromagnetyczne mogą być wykorzystywane nie tylko do nadawania programów telewizyjnych i radiowych, ale i do transmisji danych komputerowych. Nieformalnie o sieci, która korzysta z elektromagnetycznych fal radiowych, mówi się, że działa na falach radiowych, a transmisję określa się jako transmisję radiową. Sieci takie nie wymagają bezpośredniego fizycznego połączenia między komputerami. W zamian za to każdy uczestniczący w łączności komputer jest podłączony do anteny, która zarówno nadaje, jak i odbiera fale.
Anteny używane w sieciach mogą być duże lub małe w zależności od żądanego zasięgu. Antena zaprojektowana na przykład do nadawania sygnałów na kilka kilometrów przez miasto może składać się z metalowego słupka o długości 2 m zainstalowanego na dachu. Antena umożliwiająca komunikację wewnątrz budynku może być tak mała, że zmieści się wewnątrz przenośnego komputera (tzn. mniejsza niż 20 cm).
Mikrofale
Do przekazywania informacji może być również używane promieniowanie elektromagnetyczne o częstotliwościach spoza zakresu wykorzystywanego w radio i telewizji. W szczególności w telefonii komórkowej używa się mikrofal do przenoszenia rozmów telefonicznych. Kilka dużych koncernów zainstalowało systemy komunikacji mikrofalowej jako części swoich sieci.
Mikrofale, chociaż są to tylko fale o wyższej częstotliwości niż fale radiowe, zachowują się inaczej. Zamiast nadawania w wszystkich kierunkach mamy w tym przypadku możliwość ukierunkowania transmisji, co zabezpiecza przed odebraniem sygnału przez innych. Dodatkowo za pomocą transmisji mikrofalowej można przenosić więcej informacji niż za pomocą transmisji radiowej o mniejszej częstotliwości. Jednak, ponieważ mikrofale nie przechodzą przez struktury metalowe, transmisja taka działa najlepiej, gdy mamy "czystą" drogę między nadajnikiem a odbiornikiem. W związku z tym większość instalacji mikrofalowych składa się z dwóch wież wyższych od otaczających budynków i roślinności, na każdej z nich jest zainstalowany nadajnik skierowany bezpośrednio w kierunku odbiornika na drugiej.
Podczerwień
Bezprzewodowe zdalne sterowniki używane w urządzeniach takich jak telewizory czy wieże stereo komunikują się za pomocą transmisji w podczerwieni. Taka transmisja jest ograniczona do małej przestrzeni i zwykle wymaga, aby nadajnik był nakierowany na odbiornik. Sprzęt wykorzystujący podczerwień jest w porównaniu z innymi urządzeniami niedrogi i nie wymaga anteny.
Transmisja w podczerwieni może być użyta w sieciach komputerowych do przenoszenia danych. Możliwe jest na przykład wyposażenia dużego pokoju w pojedyncze połączenie na podczerwień, które zapewnia dostęp sieciowy do wszystkich komputerów w pomieszczeniu. Komputery będą połączone siecią podczas przemieszczania ich w ramach tego pomieszczenia. Sieci oparte na podczerwień są szczególnie wygodne w przypadku małych, przenośnych komputerów.
Światło laserowe
Wspomniano już, że światło może zostać użyte do komunikacji poprzez światłowody. Promień światła może być również użyty do przenoszenia danych powietrzem. W połączeniu wykorzystującym światło są dwa punkty - w każdym znajduje się nadajnik i odbiornik. Sprzęt ten jest zamontowany w stałej pozycji, zwykle na wieży, i ustawiony tak, że nadajnik w jednym miejscu wysyła promień światła dokładnie do odbiornika w drugim. Nadajnik wykorzystuje laser do generowania promienia świetlnego gdyż jego światło pozostaje skupione na długich dystansach.
Światło lasera podobnie jak mikrofale porusza się po linii prostej i nie może być przesłaniane. Niestety promień lasera nie przenika przez roślinność. Tłumią go również śnieg i mgła. To powoduje, że transmisje laserowe mają ograniczone zastosowanie.
Majron - Śro 17 Maj, 2006 17:57 Temat postu: Okablowanie strukturalne kat. 5E, 6E, 7E Witam
Pilnie poszukuje matreiałów do pracy na temat:
"Porównanie okablowania strukturalnego katrgorii 5E, 6E, 7E"
Nigdzie nie moge znaleść materiałów na ten temat, a musze szybko napisac prace zaliczeniową.
Bardzo prosze o pomoc, może ktoś z was ma coś takiego.
Pozdrawiam
|
|
|